Energetic mapping of oxide traps in MoS2 field-effect transistors

نویسندگان

  • Yury Yu Illarionov
  • Gerhard Rzepa
  • Michael Waltl
  • Brian M Bersch
  • Sarah M Eichfeld
  • Yu-Chuan Lin
  • Yurong Liu
  • Junbiao Peng
  • Renan Trevisoli
  • Michelly de Souza
  • Rodrigo Trevisoli Doria
  • Chih-Chieh Hsu
  • Chien-Hsun Wu
چکیده

The performance of MoS2 transistors is strongly affected by charge trapping in oxide traps with very broad distributions of time constants. These defects degrade the mobility and additionally lead to the hysteresis of the gate transfer characteristics, which presents a crucial performance and reliability issue for these new technologies. Here we perform a detailed study of the hysteresis in double-gated MoS2 FETs and show that this issue is nothing else than a combination of threshold voltage shifts resulting from positive and negative bias-temperature instabilities. While these instabilities are well known from silicon devices, they are even more important in 2D devices given the considerably larger defect densities. Most importantly, the magnitudes of these threshold voltage shifts depend strongly on the density and energetic alignment of the active oxide traps. Based on this, we introduce the incremental hysteresis sweep method which allows for an accurate mapping of these defects and extract their energy distributions from simulations. By applying our method to analyze the impact of oxide traps situated in the Al2O3 top gate of several devices, we confirm its versatility. Since all 2D devices investigated so far suffer from a similar hysteresis behavior, the incremental hysteresis sweep method provides a unique and powerful way for the detailed characterization of their defect bands. PAPER 2017

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly-stable black phosphorus field-effect transistors with low density of oxide traps

Black phosphorus is considered a very promising semiconductor for two-dimensional field-effect transistors. Initially, the main disadvantage of this material was thought to be its poor air stability. However, recent studies have shown that this problem can be solved by suitable encapsulation. As such, long-term studies of the outstanding properties of black phosphorus devices have become possib...

متن کامل

Improved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer

Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical...

متن کامل

Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors.

Black phosphorus has been recently suggested as a very promising material for the use in 2D field-effect transistors. However, due to its poor stability under ambient conditions, this material has not yet received as much attention as for instance MoS2. We show that the recently demonstrated Al2O3 encapsulation leads to highly stable devices. In particular, we report our long-term study on high...

متن کامل

High-performance MoS2 transistors with low-resistance molybdenum contacts

Articles you may be interested in Separation of interlayer resistance in multilayer MoS2 field-effect transistors Appl. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl.

متن کامل

MoS2 Nanoribbon Transistors: Transition From Depletion Mode to Enhancement Mode by Channel-Width Trimming

We study the channel width scaling of back-gated MoS2 metal–oxide–semiconductor field-effect transistors from 2 μm down to 60 nm. We reveal that the channel conductance scales linearly with channel width, indicating no evident edge damage for MoS2 nanoribbons with widths down to 60 nm as defined by plasma dry etching. However, these transistors show a strong positive threshold voltage (VT ) shi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017